Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We have performed simulations of both a single potassium ion and a single sodium ion within the pore of the bacterial potassium channel KcsA. For both ions there is a dehydration energy barrier at the cytoplasmic mouth suggesting that the crystal structure is a closed conformation of the channel. There is a potential energy barrier for a sodium ion in the selectivity filter that is not seen for potassium. Radial distribution functions for both ions with the carbonyl oxygens of the selectivity filter indicate that sodium may interact more tightly with the filter than does potassium. This suggests that the key to the ion selectivity of KcsA is the greater dehydration energy of Na(+) ions, and helps to explain the block of KcsA by internal Na(+) ions.

Type

Journal article

Journal

Biochim Biophys Acta

Publication Date

09/02/2001

Volume

1510

Pages

1 - 9

Keywords

Bacterial Proteins, Cations, Monovalent, Models, Molecular, Potassium, Potassium Channels, Sodium, Thermodynamics, Water