Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Elevated mitotic recombination and cell cycle delays are two of the cellular responses to UV-induced DNA damage. Cell cycle delays in response to DNA damage are mediated via checkpoint proteins. Two distinct DNA damage checkpoints have been characterized in Schizosaccharomyces pombe: an intra-S-phase checkpoint slows replication and a G(2)/M checkpoint stops cells passing from G(2) into mitosis. In this study we have sought to determine whether UV damage-induced mitotic intrachromosomal recombination relies on damage-induced cell cycle delays. The spontaneous and UV-induced recombination phenotypes were determined for checkpoint mutants lacking the intra-S and/or the G(2)/M checkpoint. Spontaneous mitotic recombinants are thought to arise due to endogenous DNA damage and/or intrinsic stalling of replication forks. Cells lacking only the intra-S checkpoint exhibited no UV-induced increase in the frequency of recombinants above spontaneous levels. Mutants lacking the G(2)/M checkpoint exhibited a novel phenotype; following UV irradiation the recombinant frequency fell below the frequency of spontaneous recombinants. This implies that, as well as UV-induced recombinants, spontaneous recombinants are also lost in G(2)/M mutants after UV irradiation. Therefore, as well as lack of time for DNA repair, loss of spontaneous and damage-induced recombinants also contributes to cell death in UV-irradiated G(2)/M checkpoint mutants.


Journal article



Publication Date





891 - 908


Cell Cycle, Checkpoint Kinase 2, DNA Repair, DNA Replication, Genes, cdc, Mutation, Protein Kinases, Protein-Serine-Threonine Kinases, Recombination, Genetic, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Ultraviolet Rays