Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Molecular dynamics simulations of a bacterial potassium channel (KcsA) embedded in a phospholipid bilayer reveal significant differences in interactions of the selectivity filter with K(+) compared with Na(+) ions. K(+) ions and water molecules within the filter undergo concerted single-file motion in which they translocate between adjacent sites within the filter on a nanosecond timescale. In contrast, Na(+) ions remain bound to sites within the filter and do not exhibit translocation on a nanosecond timescale. Furthermore, entry of a K(+) ion into the filter from the extracellular mouth is observed, whereas this does not occur for a Na(+) ion. Whereas K(+) ions prefer to sit within a cage of eight oxygen atoms of the filter, Na(+) ions prefer to interact with a ring of four oxygen atoms plus two water molecules. These differences in interactions in the selectivity filter may contribute to the selectivity of KcsA for K(+) ions (in addition to the differences in dehydration energy between K(+) and Na(+)) and the block of KcsA by internal Na(+) ions. In our simulations the selectivity filter exhibits significant flexibility in response to changes in ion/protein interactions, with a somewhat greater distortion induced by Na(+) than by K(+) ions.

Type

Journal article

Journal

Biophys J

Publication Date

08/2002

Volume

83

Pages

633 - 645

Keywords

Biophysical Phenomena, Biophysics, Computer Simulation, Ions, Models, Molecular, Models, Theoretical, Oxygen, Potassium, Potassium Channels, Protein Binding, Sodium, Software, Time Factors, Water