Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Understanding the mechanisms of evolution requires identification of the molecular basis of the multiple (pleiotropic) effects of specific adaptive mutations. We have characterized the pleiotropic effects on protein levels of an adaptive single-base pair substitution in the coding sequence of a signaling pathway gene in the bacterium Pseudomonas fluorescens SBW25. We find 52 proteomic changes, corresponding to 46 identified proteins. None of these proteins is required for the adaptive phenotype. Instead, many are found within specific metabolic pathways associated with fitness-reducing (that is, antagonistic) effects of the mutation. The affected proteins fall within a single coregulatory network. The mutation 'rewires' this network by drawing particular proteins into tighter coregulating relationships. Although these changes are specific to the mutation studied, the quantitatively altered proteins are also affected in a coordinated way in other examples of evolution to the same niche.

Original publication




Journal article


Nat Genet

Publication Date





1015 - 1022


Adaptation, Physiological, Bacterial Proteins, Electrophoresis, Gel, Two-Dimensional, Evolution, Molecular, Genes, Bacterial, Phylogeny, Point Mutation, Proteome, Pseudomonas fluorescens, Software, Species Specificity