Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Repetitive cell cycles, which are essential to the perpetuation of life, are orchestrated by an underlying biochemical reaction network centered around cyclin-dependent protein kinases (Cdks) and their regulatory subunits (cyclins). Oscillations of Cdk1/CycB activity between low and high levels during the cycle trigger DNA replication and mitosis in the correct order. Based on computational modeling, we proposed that the low and the high kinase activity states are alternative stable steady states of a bistable Cdk-control system. Bistability is a consequence of system-level feedback (positive and double-negative feedback signals) in the underlying control system. We have also argued that bistability underlies irreversible transitions between low and high Cdk activity states and thereby ensures directionality of cell cycle progression.

Original publication

DOI

10.1016/j.febslet.2009.08.023

Type

Journal article

Journal

FEBS Lett

Publication Date

17/12/2009

Volume

583

Pages

3992 - 3998

Keywords

Cell Cycle, Feedback, Physiological, Metabolic Networks and Pathways, Saccharomycetales