Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Clostridium perfringens is a Gram-positive bacterium responsible for bacteremia, gas gangrene, and occasionally food poisoning. Its genome encodes three sialidases, nanH, nanI, and nanJ, that are involved in the removal of sialic acids from a variety of glycoconjugates and that play a role in bacterial nutrition and pathogenesis. Recent studies on trypanosomal (trans-) sialidases have suggested that catalysis in all sialidases may proceed via a covalent intermediate similar to that of other retaining glycosidases. Here we provide further evidence to support this suggestion by reporting the 0.97A resolution atomic structure of the catalytic domain of the C. perfringens NanI sialidase, and complexes with its substrate sialic acid (N-acetylneuramic acid) also to 0.97A resolution, with a transition-state analogue (2-deoxy-2,3-dehydro-N-acetylneuraminic acid) to 1.5A resolution, and with a covalent intermediate formed using a fluorinated sialic acid analogue to 1.2A resolution. Together, these structures provide high resolution snapshots along the catalytic pathway. The crystal structures suggested that NanI is able to hydrate 2-deoxy-2,3-dehydro-N-acetylneuraminic acid to N-acetylneuramic acid. This was confirmed by NMR, and a mechanism for this activity is suggested.

Original publication

DOI

10.1074/jbc.M710247200

Type

Journal article

Journal

J Biol Chem

Publication Date

04/04/2008

Volume

283

Pages

9080 - 9088

Keywords

Bacteremia, Catalysis, Clostridium perfringens, Crystallography, X-Ray, Foodborne Diseases, Gas Gangrene, Glycoconjugates, Humans, Neuraminidase, Nuclear Magnetic Resonance, Biomolecular, Protein Structure, Tertiary, Sialic Acids