Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nanoparticles assembled with poly(styrene-maleic acid) copolymers, identified in the literature as Lipodisq, SMALPs or Native Nanodisc, are routinely used as membrane mimetics to stabilise protein structures in their native conformation. To date, transmembrane proteins of varying complexity (up to 8 beta strands or 48 alpha helices) and of a range of molecular weights (from 27 kDa up to 500 kDa) have been incorporated into this particle system for structural and functional studies. SMA and related amphipathic polymers have become versatile components of the biochemist's tool kit for the stabilisation, extraction and structural characterization of membrane proteins by techniques including cryo-EM and X-ray crystallography. Lipodisq formation does not require the use of conventional detergents and thus avoids their associated detrimental consequences. Here the development of this technology, from its fundamental concept and design to the diverse range of experimental methodologies to which it can now be applied, will be reviewed.

Original publication




Journal article


Chem Phys Lipids

Publication Date