Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: DNA replication and mitosis are triggered by activation of kinase complexes, each made up of a cyclin and a cyclin-dependent kinase (Cdk). It had seemed possible that the association of Cdks with different classes of cyclins specifies whether S phase (replication) or M phase (mitosis) will occur. The recent finding that individual B-type cyclins (encoded by the genes CLB1-CLB6) can have functions in both processes in the budding yeast Saccharomyces cerevisiae casts doubt on this notion. RESULTS: S. cerevisiae strains lacking C1b1-C1b4 undergo DNA replication once but fail to enter mitosis. We have isolated mutations in two genes, SIM1 and SIM2 (SIM2 is identical to SEC72), which allow such cells to undergo an extra round of DNA replication without mitosis. The Clb5 kinase, which promotes S phase, remains active during the G2-phase arrest of cells of the parental strain, but its activity declines rapidly in sim mutants. Increased expression of the CLB5 gene prevents re-replication. Thus, a cyclin B-kinase that promotes DNA replication in G1-phase cells can prevent re-replication in G2-phase cells. Inactivation of C1b kinases by expression of the specific C1b-Cdk1 inhibitor p40SIC1 is sufficient to induce a prereplicative state at origins of replication in cells blocked in G2/M phase by nocodazole. Re-activation of C1b-Cdk1 kinases induces a second round of DNA replication. CONCLUSIONS: We propose that S-phase-promoting cyclin B--Cdk complexes prevent re-replication during S, G2 and M phases by inhibiting the transition of replication origins to a pre-replicative state. This model can explain both why origins 'fire' only once per S phase and why S phase is dependent on completion of the preceding M phase.

Type

Journal article

Journal

Curr Biol

Publication Date

01/11/1995

Volume

5

Pages

1257 - 1269

Keywords

Cell Cycle, Cloning, Molecular, Cyclin B, Cyclin-Dependent Kinases, Cyclins, DNA Replication, G2 Phase, Gene Expression Regulation, Mutation, Nocodazole, Replication Origin, S Phase, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins