Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In eukaryotic cells, DNA replication is confined to a discrete period of the cell cycle and does not usually recur until after anaphase. In the budding yeast Saccharomyces cerevisiae, assembly of pre-replication complexes (pre-RCs) at future origins as cells exit mitosis (or later during G1 is necessary for subsequent initiation of DNA replication triggered by activation in late G1 of Cdc28/Cdk1 kinases associated with B-type cyclins Clb1-Clb6. The absence of pre-RCs during G2 and M phases could explain why origins of DNA replication fire only once during the cell cycle, even though S-phase-promoting Cdks remain active from the beginning of S phase through the end of M phase. Formation of pre-RCs and their maintenance during G1 depend on the synthesis and activity of an unstable protein encoded by CDC6. We find that Cdc6 synthesis can only promote DNA replication in a restricted window of the cell cycle: between destruction of Clbs after anaphase and activation of Clb5/ and Clb6/Cdk1 in late G1. The latter corresponds to a "point of no return," after which Cdc6 synthesis can no longer promote DNA replication. Cdc6 protein can be made throughout the cell cycle and, in certain circumstances, can accumulate within the nuclei of G2 and M phase cells without inducing re-replication. Thus, control over Cdc6 degradation and/or nuclear localization is not crucial for preventing origin re-firing. Our data are consistent with the notion that cells can no longer incorporate de novo synthesized Cdc6 into pre-RCs once C1b/Cdk1 kinases have been activated. We show that Cdc6p associates with Clb/Cdk1 kinases from late G1 until late anaphase, which might be important for inhibiting pre-RC assembly during S, G2, and M phases. Inhibition of pre-RC assembly by the same kinases that trigger initiation explains how origins are prevented from re-firing until Clb kinases are destroyed after anaphase.

Type

Journal article

Journal

Genes Dev

Publication Date

15/06/1996

Volume

10

Pages

1516 - 1531

Keywords

Anaphase, Cell Cycle Proteins, Cell Nucleus, Cyclin B, Cyclin-Dependent Kinases, Cyclins, DNA Replication, F-Box Proteins, G1 Phase, Gene Expression Regulation, Fungal, Mitosis, Nocodazole, Protein Kinases, Protein-Serine-Threonine Kinases, S Phase, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Ubiquitin-Protein Ligases