Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

When yeast cells reach a critical size in late G1 they simultaneously start budding, initiate DNA synthesis, and activate transcription of a set of genes that includes G1 cyclins CLN1, CLN2, and many DNA synthesis genes. Cell cycle-regulated expression of CLN1, CLN2 genes is attributable to the heteromeric transcription factor complex SBF. SBF is composed of Swi4 and Swi6 and binds to the promoters of CLN1 and CLN2. Different cyclin-Cdc28 complexes have different effects on late G1-specific transcription. Activation of transcription at the G1/S boundary requires Cdc28 and one of the G1 cyclins Cln1-Cln3, whereas repression of SBF-regulated genes in G2 requires the association of Cdc28 with G2-specific cyclins Clb1-Clb4. Using in vivo genomic footprinting, we show that SBF (Swi4/Swi6) binding to SCB elements (Swi4/Swi6 cell cycle box) in the CLN2 promoter is cell cycle regulated. SBF binds to the promoter prior to the activation of transcription in late G1, suggesting that Cln/Cdc28 kinase regulates the ability of previously bound SBF to activate transcription. In contrast, SBF dissociates from the CLN2 promoter when transcription is repressed during G2 and M phases, suggesting that Clb1-Clb4 repress SBF activity by inhibiting its DNA-binding activity. Switching transcription on and off by different mechanisms could be important to ensure that Clns are activated only once per cell cycle and could be a conserved feature of cell cycle-regulated transcription.

Type

Journal article

Journal

Genes Dev

Publication Date

15/01/1996

Volume

10

Pages

129 - 141

Keywords

Bacterial Proteins, Base Sequence, CDC28 Protein Kinase, S cerevisiae, Cloning, Molecular, Cyclins, DNA Footprinting, DNA, Fungal, DNA-Binding Proteins, Fungal Proteins, G2 Phase, Gene Expression Regulation, Fungal, Molecular Sequence Data, Promoter Regions, Genetic, Protein Binding, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Serine Endopeptidases, Transcription Factors, Transcription, Genetic