Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Repression of the yeast silent mating type loci requires cis-acting sequences located over 1 kb from the regulated promoters. One of these sites, a "silencer," exhibits enhancer-like distance- and orientation-independence. The silencer demonstrates both autonomous replication sequence (ARS) activity and a centromere-like segregation function, suggesting roles for DNA replication and segregation in transcriptional repression. Here we identify three sequences (A, E, and B) involved both in repression and in either ARS or segregation activity. The sequences are functionally redundant: no one is essential for complete transcriptional control, but mutations in any two inactivate the silencer. Surprisingly, elements E and B can each activate transcription from heterologous promoters, and E shows striking homology to several yeast upstream activation sequences. Therefore, sequences individually involved in replication, segregation, and transcriptional activation can, at the silencer, efficiently repress transcription.


Journal article



Publication Date





709 - 719


Base Sequence, DNA Replication, DNA, Fungal, Gene Expression Regulation, Genes, Fungal, Genes, Mating Type, Fungal, Genes, Regulator, Molecular Sequence Data, Mutation, Plasmids, Saccharomyces cerevisiae, Transcription Factors, Transcription, Genetic