Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Most organisms are built from a single genome. In striking contrast, arbuscular mycorrhizal fungi appear to maintain genomic variation within an individual fungal network. Arbuscular mycorrhizal fungi dwell in the soil, form mutualistic networks with plants, and bear multiple, potentially genetically diverse nuclei within a network. We explore, from a theoretical perspective, why such genetic diversity might be maintained within individuals. We consider selection acting within and between individual fungal networks. We show that genetic diversity could provide a benefit at the level of the individual, by improving growth in variable environments, and that this can stabilize genetic diversity even in the presence of nuclear conflict. Arbuscular mycorrhizal fungi complicate our understanding of organismality, but our findings offer a way of understanding such biological anomalies.

Original publication




Journal article


Ecol Evol

Publication Date





2425 - 2435


arbuscular mycorrhizal fungi, chimera, genetic conflict, individuality, intraorganismal genetic heterogeneity, levels of selection, modular organisms, mosaic, mycorrhizal networks, organismality