Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The propagation of our genomes during cell proliferation depends on the movement of sister DNA molecules produced by DNA replication to opposite sides of the cell before it divides. This feat is achieved by microtubules in eukaryotic cells but it has long remained a mystery how cells ensure that sister DNAs attach to microtubules with opposite orientations, known as amphitelic attachment. It is currently thought that sister chromatid cohesion has a crucial role. By resisting the forces exerted by microtubules, sister chromatid cohesion gives rise to tension that is thought essential for stabilizing kinetochore-microtubule attachments. Efficient amphitelic attachment is therefore achieved by an error correction mechanism that selectively eliminates connections that do not give rise to tension. Cohesion between sister chromatids is mediated by a multisubunit complex called cohesin which forms a gigantic ring structure. It has been proposed that sister DNAs are held together owing to their becoming entrapped within a single cohesin ring. Cohesion between sister chromatids is destroyed at the metaphase to anaphase transition by proteolytic cleavage of cohesin's Scc1 subunit by a thiol protease called separase, which severs the ring and thereby releases sister DNAs.

Original publication




Journal article


Philos Trans R Soc Lond B Biol Sci

Publication Date





99 - 108


Cell Cycle Proteins, Chromatids, Chromosomal Proteins, Non-Histone, Chromosome Segregation, DNA, DNA Replication, Endopeptidases, Fungal Proteins, Microtubules, Models, Genetic, Nuclear Proteins, Separase