Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The persistence of malaria in large parts of sub-Saharan Africa has motivated the development of novel tools to complement existing control programmes, including gene-drive technologies to modify mosquito vector populations. Here, we use a stochastic simulation model to explore the potential of using a driving-Y chromosome to suppress vector populations in a 106 km2 area of West Africa including all of Burkina Faso. RESULTS: The consequence of driving-Y introductions is predicted to vary across the landscape, causing elimination of the target species in some regions and suppression in others. We explore how this variation is determined by environmental conditions, mosquito behaviour, and the properties of the gene-drive. Seasonality is particularly important, and we find population elimination is more likely in regions with mild dry seasons whereas suppression is more likely in regions with strong seasonality. CONCLUSIONS: Despite the spatial heterogeneity, we suggest that repeated introductions of modified mosquitoes over a few years into a small fraction of human settlements may be sufficient to substantially reduce the overall number of mosquitoes across the entire geographic area.

Original publication

DOI

10.1186/s12915-019-0645-5

Type

Journal article

Journal

BMC Biol

Publication Date

29/03/2019

Volume

17

Keywords

Driving-Y, Gene-drive, Malaria, Mosquito