Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Slowing of the rate at which a rivalrous percept switches from one configuration to another has been suggested as a potential trait marker for bipolar disorder. We measured perceptual alternations for a bistable, rotating, structure-from-motion cylinder in bipolar and control participants. In a control task, binocular depth rendered the direction of cylinder rotation unambiguous to monitor participants' performance and attention during the experimental task. A particular direction of rotation was perceptually stable, on average, for 33.5s in participants without psychiatric diagnosis. Euthymic, bipolar participants showed a slightly slower rate of switching between the two percepts (percept duration 42.3s). Under a parametric analysis of the best-fitting model for individual participants, this difference was statistically significant. However, the variability within groups was high, so this difference in average switch rates was not big enough to serve as a trait marker for bipolar disorder. We also found that low-level visual capacities, such as stereo threshold, influence perceptual switch rates. We suggest that there is no single brain location responsible for perceptual switching in all different ambiguous figures and that perceptual switching is generated by the actions of local cortical circuitry.

Original publication

DOI

10.1098/rspb.2008.0043

Type

Journal article

Journal

Proc Biol Sci

Publication Date

22/08/2008

Volume

275

Pages

1839 - 1848

Keywords

Adult, Aged, Bipolar Disorder, Female, Humans, Male, Middle Aged, Rotation, Time Factors, Visual Cortex, Visual Perception