Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sex differences in the genetic epidemiology and clinical features of psychiatric disorders are well recognized, but the individual genes contributing to these effects have rarely been identified. Catechol-O-methyltransferase (COMT), which metabolizes catechol compounds, notably dopamine, is a leading candidate. COMT enzyme activity, and the neurochemistry and behavior of COMT null mice, are both markedly sexually dimorphic. Genetic associations between COMT and various psychiatric phenotypes frequently show differences between men and women. Many of these differences are unconfirmed or minor, but some appear to be of reasonable robustness and magnitude; eg the functional Val(158)Met polymorphism in COMT is associated with obsessive-compulsive disorder in men, with anxiety phenotypes in women, and has a greater impact on cognitive function in boys than girls. Sex-specific effects of COMT are usually attributed to transcriptional regulation by estrogens; however, additional mechanisms are likely to be at least as important. Here we review the evidence for a sexually dimorphic influence of COMT upon psychiatric phenotypes, and discuss its potential basis. We conclude that despite the evidence being incomplete, and lacking a unifying explanation, there are accumulating and in places compelling data showing that COMT differentially impacts on brain function and dysfunction in men and women. Since sex differences in the genetic architecture of quantitative traits are the rule not the exception, we anticipate that additional evidence will emerge for sexual dimorphisms, not only in COMT but also in many other autosomal genes.

Original publication

DOI

10.1038/sj.npp.1301543

Type

Journal article

Journal

Neuropsychopharmacology

Publication Date

12/2008

Volume

33

Pages

3037 - 3045

Keywords

Animals, Brain, Brain Chemistry, Catechol O-Methyltransferase, Dopamine, Genetic Predisposition to Disease, Gonadal Steroid Hormones, Humans, Mice, Neurocognitive Disorders, Polymorphism, Genetic, Sex Characteristics