Noninvasive cardiac output monitoring in a porcine model using the inspired sinewave technique: a proof-of-concept study.
Bruce RM., Crockett DC., Morgan A., Tran MC., Formenti F., Phan PA., Farmery AD.
BACKGROUND: Cardiac output (Q˙) monitoring can support the management of high-risk surgical patients, but the pulmonary artery catheterisation required by the current 'gold standard'-bolus thermodilution (Q˙T)-has the potential to cause life-threatening complications. We present a novel noninvasive and fully automated method that uses the inspired sinewave technique to continuously monitor cardiac output (Q˙IST). METHODS: Over successive breaths the inspired nitrous oxide (N2O) concentration was forced to oscillate sinusoidally with a fixed mean (4%), amplitude (3%), and period (60 s). Q˙IST was determined in a single-compartment tidal ventilation lung model that used the resulting amplitude/phase of the expired N2O sinewave. The agreement and trending ability of Q˙IST were compared with Q˙T during pharmacologically induced haemodynamic changes, before and after repeated lung lavages, in eight anaesthetised pigs. RESULTS: Before lung lavage, changes in Q˙IST and Q˙T from baseline had a mean bias of -0.52 L min-1 (95% confidence interval [CI], -0.41 to -0.63). The concordance between Q˙IST and Q˙T was 92.5% as assessed by four-quadrant analysis, and polar plot analysis revealed a mean angular bias of 5.98° (95% CI, -24.4°-36.3°). After lung lavage, concordance was slightly reduced (89.4%), and the mean angular bias widened to 21.8° (-4.2°, 47.6°). Impaired trending ability correlated with shunt fraction (r=0.79, P<0.05). CONCLUSIONS: The inspired sinewave technique provides continuous and noninvasive monitoring of cardiac output, with a 'marginal-good' trending ability compared with cardiac output based on thermodilution. However, the trending ability can be reduced with increasing shunt fraction, such as in acute lung injury.