Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Phosphatidylinositol 3-kinases are a family of dual specificity lipid/protein kinases. The products of PI3K's, phosphatidylinositol(3,4,5) triphosphate and phosphatidylinositol(3,4) bisphosphate, act as second messengers connecting activated transmembrane receptors to signaling pathways that control gene transcription, proliferation, transformation, programmed cell death, adhesion, migration and vesicular transport. There is evidence that different isoforms of PI3K's activate specific signaling pathways and are thus responsible for integrating cellular responses. The elucidation of the genomic structure of the catalytic subunits is a necessary step for the investigation of the function of PI3K isoforms by inactivation of the gene in vivo. The structural organization of p110alpha, beta, and gamma genes has been previously reported. Here we report the cloning, sequencing, and structural organization of the mouse p110delta gene from a murine 129/Sv genomic library. The p110delta gene consists of 22 exons and spans over 13 kb. Comparison of the genomic structure with that of p110alpha, beta, and gamma demonstrates that the p110delta gene shares its exon structure with p110beta, the most closely related PI3K at the amino acid level.

Original publication

DOI

10.1006/bbrc.2001.4281

Type

Journal article

Journal

Biochem Biophys Res Commun

Publication Date

09/02/2001

Volume

280

Pages

1328 - 1332

Keywords

Amino Acid Sequence, Animals, Base Sequence, Cloning, Molecular, DNA, Exons, Genes, Introns, Mice, Mice, Inbred Strains, Molecular Sequence Data, Phosphatidylinositol 3-Kinases, Sequence Analysis, DNA