Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We have characterized changes in [Ca2+]i in primary mouse megakaryocytes in response to fibrillar collagen and in response to cross-linking of the collagen receptor, the integrin alpha2beta1. The response to collagen was markedly different from that seen to a triple helical collagen-related peptide (CRP), which signals via the tyrosine kinases p59(fyn) and p72(syk). This peptide binds to the collagen receptor glycoprotein VI (GPVI), but not to the integrin alpha2beta1. Collagen elicited a sustained increase in [Ca2+]i composed primarily of influx of extracellular Ca2+ with some Ca2+ release from internal stores. In contrast to CRP, this response was only partially (approximately 30%) inhibited by the src-family kinase inhibitor PP1 (10 micromol/L) or by microinjection of the tandem SH2 domains of p72(syk). Collagen also caused an increase in [Ca2+]i in megakaryocytes deficient in either p59(fyn) or p72(syk), although the response was reduced by approximately 40% in both cases: Cross-linking of the alpha2 integrin increased [Ca2+]i in these cells exclusively via Ca2+ influx. This response was reduced by approximately 50% after PP1 pretreatment, but was significantly increased in fyn-deficient megakaryocytes. Collagen therefore increases [Ca2+]i in mouse megakaryocytes via multiple receptors, including GPVI, which causes Ca2+ mobilization, and alpha2beta1, which stimulates a substantial influx of extracellular Ca2+.

Type

Journal article

Journal

Blood

Publication Date

01/06/1999

Volume

93

Pages

3847 - 3855

Keywords

Animals, Calcium, Cells, Cultured, Collagen, Enzyme Precursors, Integrins, Intracellular Signaling Peptides and Proteins, Ion Transport, Megakaryocytes, Mice, Protein-Tyrosine Kinases, Receptors, Collagen, Signal Transduction, Syk Kinase