Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Vector-borne diseases are a major public health concern inflicting high levels of disease morbidity and mortality. Vector control is one of the principal methods available to manage infectious disease burden. One approach, releasing modified vectors (such as sterile or GM mosquitoes) into wild population has been suggested as an effective method of vector control. However, the effects of dispersal and the spatial distribution of disease vectors (such as mosquitoes) remain poorly studied. Here, we develop a novel mathematical framework using an integrodifference equation (discrete in time and continuous in space) approach to understand the impact of releasing sterile insects into the wild population in a spatially explicit environment. We prove that an optimal release strategy exists and show how it may be characterized by defining a sensitivity variable and an adjoint system. Using simulations, we show that the optimal strategy depends on the spatially varying carrying capacity of the environment.

Type

Journal article

Journal

Journal of Mathematical Biology

Publisher

Springer (part of Springer Nature)