The molecular evolution of C4 photosynthesis: opportunities for understanding and improving the world's most productive plants.
Niklaus M., Kelly S.
C4 photosynthesis is a convergent evolutionary trait that enhances photosynthetic efficiency in a variety of environmental conditions. It has evolved repeatedly following a fall in atmospheric CO2 concentration such that there is up to 30 million years difference in the amount of time that natural selection has had to improve C4 function between the oldest and youngest C4 lineages. This large difference in time, coupled with the phylogenetic distance between lineages, has resulted in a large disparity in anatomy, physiology, and biochemistry between extant C4 species. This review summarises the myriad of molecular sequence changes that have been linked to the evolution of C4 photosynthesis. These range from single nucleotide changes to duplication of entire genes, and provide a roadmap for how natural selection has adapted enzymes and pathways for enhanced C4 function. Finally, this review discusses how this molecular diversity can provide opportunities for understanding and improving photosynthesis for multiple important C4 food, feed, and bioenergy crops.