Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The impact of photoreceptor loss on the circadian system was examined by utilizing a transgenic mouse model (rdta) in which rod photoreceptors were specifically ablated. These mice were able to phase-shift their circadian locomotor behaviour in response to light, but features of this circadian behaviour were markedly altered. The amplitude of circadian responses to light were approximately 2.5 greater, the circadian period (tau) was reduced (c. 20 min) and the total duration of activity (alpha) was increased (c. 50 min) when compared to wild type (+/+) and rd/rd mice (retinal degeneration, mice which also lack rod photoreceptors) of the same genetic background. The pattern of Fos expression in the suprachiasmatic nuclei (the site of the primary circadian clock in mammals) was indistinguishable between +/+ and rdta mice. However, Fos expression in the retina suggested that rod loss in rdta mice resulted in a functional reorganization of the retina and the constitutive activation of a population of retinal ganglion cells. Although it has been known for several years that the entraining photoreceptors of mammals are ocular, and that rod photoreceptors are not required for light regulation of the clock, these are the first data to show that features of the circadian phenotype (amplitude of the phase response curve, alpha, tau) can be influenced by photoreceptor ablation. These data support the hypothesis that the circadian phenotype of mammals is the product of an interaction between the suprachiasmatic nuclei and the retina. Thus, mammals which show an altered circadian behaviour can no longer be assumed to have defects associated only with specific clock genes; genes that affect photoreceptor survival may also modify circadian behaviour.

Type

Journal article

Journal

Neuroscience

Publication Date

03/1999

Volume

89

Pages

363 - 374

Keywords

Animals, Circadian Rhythm, Geniculate Bodies, Immunohistochemistry, Light, Mice, Mice, Inbred C57BL, Mice, Transgenic, Motor Activity, Phenotype, Proto-Oncogene Proteins c-fos, Reference Values, Retinal Degeneration, Retinal Ganglion Cells, Retinal Rod Photoreceptor Cells, Suprachiasmatic Nucleus, Vasoactive Intestinal Peptide