Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In complex social systems such as those of many mammals, including humans, groups (and hence ego-centric social networks) are commonly structured in discrete layers. We describe a computational model for the development of social relationships based on agents' strategies for social interaction that favour more less-intense, or fewer more-intense partners. A trust-related process controls the formation and decay of relationships as a function of interaction frequency, the history of interaction, and the agents' strategies. A good fit of the observed layers of human social networks was found across a range of model parameter settings. Social interaction strategies which favour interacting with existing strong ties or a time-variant strategy produced more observation-conformant results than strategies favouring more weak relationships. Strong-tie strategies spread in populations under a range of fitness conditions favouring wellbeing, whereas weak-tie strategies spread when fitness favours foraging for food. The implications for modelling the emergence of social relationships in complex structured social networks are discussed. © JASSS.

Original publication

DOI

10.18564/jasss.2059

Type

Journal article

Journal

JASSS

Publication Date

01/01/2012

Volume

15