Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS/HYPOTHESIS: The blood triacylglycerol level is one of the main determinants of blood Mg2+ concentration in individuals with type 2 diabetes. Hypomagnesaemia (blood Mg2+ concentration <0.7 mmol/l) has serious consequences as it increases the risk of developing type 2 diabetes and accelerates progression of the disease. This study aimed to determine the mechanism by which triacylglycerol levels affect blood Mg2+ concentrations. METHODS: Using samples from 285 overweight individuals (BMI >27 kg/m2) who participated in the 300-Obesity study (an observational cross-sectional cohort study, as part of the Human Functional Genetics Projects), we investigated the association between serum Mg2+ with laboratory variables, including an extensive lipid profile. In a separate set of studies, hyperlipidaemia was induced in mice and in healthy humans via an oral lipid load, and blood Mg2+, triacylglycerol and NEFA concentrations were measured using colourimetric assays. In vitro, NEFAs harvested from albumin were added in increasing concentrations to several Mg2+-containing solutions to study the direct interaction between Mg2+ and NEFAs. RESULTS: In the cohort of overweight individuals, serum Mg2+ levels were inversely correlated with triacylglycerols incorporated in large VLDL particles (r = -0.159, p ≤ 0.01). After lipid loading, we observed a postprandial increase in plasma triacylglycerol and NEFA levels and a reciprocal reduction in blood Mg2+ concentration both in mice (Δ plasma Mg2+ -0.31 mmol/l at 4 h post oral gavage) and in healthy humans (Δ plasma Mg2+ -0.07 mmol/l at 6 h post lipid intake). Further, in vitro experiments revealed that the decrease in plasma Mg2+ may be explained by direct binding of Mg2+ to NEFAs. Moreover, Mg2+ was found to bind to albumin in a NEFA-dependent manner, evidenced by the fact that Mg2+ did not bind to fatty-acid-free albumin. The NEFA-dependent reduction in the free Mg2+ concentration was not affected by the presence of physiological concentrations of other cations. CONCLUSIONS/INTERPRETATION: This study shows that elevated NEFA and triacylglycerol levels directly reduce blood Mg2+ levels, in part explaining the high prevalence of hypomagnesaemia in metabolic disorders. We show that blood NEFA level affects the free Mg2+ concentration, and therefore, our data challenge how the fractional excretion of Mg2+ is calculated and interpreted in the clinic.

Original publication

DOI

10.1007/s00125-018-4771-3

Type

Journal article

Journal

Diabetologia

Publication Date

13/11/2018

Keywords

Albumin, Hypertriacylglycerolaemia, Hypomagnesaemia, Magnesium, Magnesium deficiency, Non-esterified fatty acid, Obesity, Triacylglycerols