Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The recent approval in the United States of the first adeno-associated viral (AAV) vector for the treatment of an inherited retinal degeneration validates this approach for the treatment of many other diseases. A major limiting factor continues to be the size restriction of the AAV transgene at under 5 kb. Stargardt disease is the most prevalent form of recessively inherited blindness and is caused by mutations in ABCA4, the gene that codes for ATP-binding cassette transporter protein family member 4, which has a coding sequence length of 6.8 kb. Dual vector approaches increase the capacity of AAV gene therapy, but at the cost of substantially reduced levels of target protein, which may be insufficient to achieve a therapeutic effect. Here we show that the efficacy of recombination of dual vectors is dependent on the length of DNA overlap between two transgenes. With optimized recombination, full-length ABCA4 protein is expressed in the photoreceptor outer segments of Abca4-/- mice at levels sufficient to reduce bisretinoid formation and correct the autofluorescent phenotype. These observations support a dual vector approach in future clinical trials using AAV gene therapy to treat Stargardt disease.

Original publication

DOI

10.1089/hum.2018.156

Type

Journal article

Journal

Hum Gene Ther

Publication Date

05/2019

Volume

30

Pages

590 - 600

Keywords

ABCA4, Stargardt disease, adeno-associated virus, dual vector, gene therapy