Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To investigate whether ventilation frequency could be entrained to a sub-harmonic of the exercise rhythm, 19 experimentally naive male volunteers were tested during steady state bicycle ergometry and arm cranking under conditions of constant applied workload. Each exercise was performed at two separate ventilatory loads, one within the linear range and the other in the curvilinear range of ventilatory response to exercise. A preferred exercise rhythm was initially adopted (4 min.) followed by forced incremented and decremented rhythm changes each lasting 3 min during a 12 min exercise period. Ventilation, pedal pulse train and heart rate were sampled at 17 Hz on a PDP 11/23 computer. Ratios of limb frequency to dominant respiratory frequency were determined following Fourier analysis of these signals. Data that lay within +/- 0.05 of an integer and half-integer ratio were accepted as indices of entrainment, provided that the observed entrained scores were statistically significant. Ventilation frequency showed a clear, but intermittent tendency to entrain with limb frequency. This tendency was greater during bicycle ergometry, possibly as a consequence of task familiarisation, although both exercise entrainments were independent of workload. No difference between preferred versus varied exercise rhythm was evident, but more entrainment (p less than 0.01) was observed during a decremental change in exercise rhythm. These responses do not appear to support an appreciable role for limb-based afferents in the control of entrainment. The results of this study provide evidence that exercise rhythm has some regulatory role in the control of breathing during moderate rhythmical laboratory-based exercise ergometry.

Original publication




Journal article


Eur J Appl Physiol Occup Physiol

Publication Date





530 - 537


Adult, Arm, Humans, Leg, Male, Oxygen Consumption, Physical Exertion, Respiration, Work of Breathing