Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The overflow and metabolism of serotonin (5-hydroxytryptamine; 5-HT) from transplants of embryonic medullary and mesencephalic raphe neurones in the previously 5-HT-denervated hippocampus have been analyzed in vivo using intracerebral dialysis. The average density of 5-HT-immunoreactive fibres in the grafted hippocampus was less than in nonlesioned hippocampus. Nonetheless, both basal and potassium-stimulated levels of 5-HT in the dialysates were restored to approximately normal after transplantation of medullary raphe cells, whereas mesencephalic implants resulted in over twice the 5-HT output observed in control hippocampus. However, 5-hydroxyindoleacetic acid (5-HIAA) overflow was increased only after grafting of mesencephalic raphe and then only to normal levels; medullary implants, by contrast, failed to enhance 5-HIAA output above that from lesion-only hippocampus. The evidence of a relative hyperactivity of the grafted neurones may explain the disproportionate improvements in various lesion-induced behavioural deficits after grafting of nervous tissue. In addition, differences in the presynaptic regulation of 5-HT release and metabolism are also apparent in the transplants; these variations are dependent on the precise origin of the serotoninergic cells.


Journal article


J Neurochem

Publication Date





303 - 306


5,7-Dihydroxytryptamine, Animals, Denervation, Dialysis, Hippocampus, Hydroxyindoleacetic Acid, Immunohistochemistry, Neurons, Raphe Nuclei, Rats, Rats, Inbred Strains, Serotonin