Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent years have seen rapid progress towards understanding the molecular mechanisms involved in X chromosome inactivation (X inactivation). This progress has largely revolved around the discovery of the X inactive specific transcript (Xist) gene, which is known now to represent the master switch locus regulating X inactivation. In adult cells Xist is transcribed exclusively from the inactive X chromosome. The transcript has no apparent protein-coding potential and is retained in the nucleus in close association with the domain occupied by the inactive X chromosome. It is thus thought to represent a functional RNA molecule which acts as the primary signal responsible for the propagation of X inactivation. Developmental regulation of Xist correlates with the developmental timing of X inactivation. Recent results have demonstrated that Xist is both necessary and sufficient for X inactivation. Goals for the future are to understand the mechanism of Xist regulation which underlies the establishment of appropriate X inactivation patterns and to determine how Xist RNA participates in the process of propagating inactivation in cis.


Journal article


Cell Mol Life Sci

Publication Date





104 - 112


Animals, Dosage Compensation, Genetic, Imprinting (Psychology), RNA, Long Noncoding, RNA, Untranslated, Transcription Factors, X Chromosome