Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Single copy probes derived from CpG-rich island clones from Eag I and Not I linking libraries and nine rare-cutter restriction endonucleases were used to investigate the methylation status of CpG-rich islands on the inactive and active X chromosomes (Chr) of the mouse. Thirteen of the 14 probes used detected CpG-rich islands in genomic DNA. The majority of island CpGs detected by rare-cutter restriction endonucleases were methylated on the inactive X Chr and unmethylated on the active X Chr, but some heterogeneity within the cell population used to make genomic DNA was detected. The CpG-rich islands detected by two putative pseudoautosomal probes remained unmethylated on both the active and inactive X Chrs. Otherwise, distance from the X Chr inactivation center did not affect the methylation profile of CpG-rich islands. We conclude that methylation of CpG-rich islands is a general feature of X Chr inactivation.


Journal article


Mamm Genome

Publication Date





78 - 83


Animals, Base Sequence, Deoxyribonucleases, Type II Site-Specific, Dosage Compensation, Genetic, Female, Heterochromatin, Male, Methylation, Mice, Mice, Inbred BALB C, Molecular Sequence Data, X Chromosome