Evidence that random and imprinted Xist expression is controlled by preemptive methylation.
Norris DP., Patel D., Kay GF., Penny GD., Brockdorff N., Sheardown SA., Rastan S.
The mouse Xist gene is expressed exclusively from the inactive X chromosome and may control the initiation of X inactivation. We show that in somatic tissues the 5' end of the silent Xist allele on the active X chromosome is fully methylated, while the expressed allele on the inactive X is completely unmethylated. In tissues that undergo imprinted paternal Xist expression and imprinted X inactivation, the paternal Xist allele is unmethylated, and the silent maternal allele is fully methylated. In the male germline, a developmentally regulated demethylation of Xist occurs at the onset of meiosis and is retained in mature spermatozoa. This may be the cause of imprinted expression of the paternal Xist allele. A role for methylation in the control of Xist expression is further supported by the finding that in differentiating embryonic stem cells during the initiation of X inactivation, differential methylation of Xist alleles precedes the onset of Xist expression.