Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The main goal of this work was to assess the accuracy of several well-known methods which provide global (BSI and SIENA) or local (Jacobian integration) estimates of longitudinal atrophy in brain structures using Magnetic Resonance images. For that purpose, we have generated realistic simulated images which mimic the patterns of change obtained from a cohort of 19 real controls and 27 probable Alzheimer's disease patients. SIENA and BSI results correlate very well with gold standard data (BSI mean absolute error < 0.29%; SIENA < 0.44%). Jacobian integration was guided by both fluid and FFD-based registration techniques and resulting deformation fields and associated Jacobians were compared, region by region, with gold standard ones. The FFD registration technique provided more satisfactory results than the fluid one. Mean absolute error differences between volume changes given by the FFD-based technique and the gold standard were: sulcal CSF < 2.49%; lateral ventricles < 2.25%; brain < 0.36%; hippocampi < 1.42%. © Springer-Verlag Berlin Heidelberg 2007.

Original publication

DOI

10.1007/978-3-540-75759-7_95

Type

Conference paper

Publication Date

01/01/2007

Volume

4792 LNCS

Pages

785 - 792