Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. The involvement of phospholipase D (PLD) in the 5-hydroxytryptamine 5-HT1B/5-HT1D-signalling pathway was assessed in the rabbit isolated mesenteric artery. 2. RT-PCR analysis of mesenteric smooth muscle cells revealed a strong signal corresponding to mRNA transcript for the 5-HT1B receptor. The PCR fragment corresponded to the known sequence for the 5-HT1B receptor. No signal corresponding to 5-HT1D mRNA was detected. 3. Neither 5-HT (3 microM) nor KCl (45 mM) individually stimulated any significant increase in the smooth muscle concentration of [33P]-PtdBut to reflect PLD activity. However, in the presence of KCl (45 mM), 5-HT evoked a concentration-dependent increase in [33P]-PtdBut, to a maximum of 84% with 5-HT (3 microM). 4. [33P]-PtdBut accumulation evoked by 5-HT in the presence of KCl was abolished in nominally calcium-free Krebs-Henseleit Buffer (KHB) or with the selective protein kinase C inhibitor, Ro-31 8220 (10 microM, 20 min). 5. 5-HT (3 microM) in the presence of KCl (45 mM) failed to increase either the accumulation of [33P]-phosphatidic acid in the presence of butanol, or total [3H]-inositol phosphates ([3H]-InsP) in the presence of LiCl (10 mM). 6. 5-HT (0.1-1 microM) abolished forskolin (1 microM) stimulated increases in cyclic AMP (15 fold increase), an action which was pertussis toxin-sensitive. 7. Therefore, in the presence of raised extracellular potassium 5-HT can stimulate PLD via 5-HT1B receptors in the rabbit mesenteric artery. This action requires extracellular calcium and the activation of protein kinase C. These characteristics are identical to the profile for 5-HT1B/5-HT1D-receptor evoked contraction in vascular smooth muscle cells, suggesting a role for PLD in this response to 5-HT.

Original publication




Journal article


Br J Pharmacol

Publication Date





1601 - 1608


Animals, Cyclic AMP, Female, Glycerophospholipids, In Vitro Techniques, Indoles, Mesenteric Arteries, Pertussis Toxin, Phospholipase D, Protein Kinase C, Rabbits, Receptor, Serotonin, 5-HT1B, Receptor, Serotonin, 5-HT1D, Receptors, Serotonin, Reverse Transcriptase Polymerase Chain Reaction, Serotonin, Vasoconstriction, Virulence Factors, Bordetella