Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The nucleotide sequence has been determined for a twelve-gene operon of Escherichia coli designated the hyf operon (hyfABCDEFGHIR-focB). The hyf operon is located at 55.8-56.0 min and encodes a putative nine-subunit hydrogenase complex (hydrogenase four or Hyf), a potential formate- and sigma 54-dependent transcriptional activator, HyfR (related to FhlA), and a possible formate transporter, FocB (related to FocA). Five of the nine Hyf-complex subunits are related to subunits of both the E. coli hydrogenase-3 complex (Hyc) and the proton-translocating NADH:quinone oxidoreductases (complex I and Nuo), whereas two Hyf subunits are related solely to NADH:quinone oxidoreductase subunits. The Hyf components include a predicted 523 residue [Ni-Fe] hydrogenase (large subunit) with an N-terminus (residues 1-170) homologous to the 30 kDa or NuoC subunit of complex I. It is proposed that Hyf, in conjunction with formate dehydrogenase H (Fdh-H), forms a hitherto unrecognized respiration-linked proton-translocating formate hydrogenlyase (FHL-2). It is likely that HyfR acts as a formate-dependent regulator of the hyf operon and that FocB provides the Hyf complex with external formate as substrate.

Original publication

DOI

10.1099/00221287-143-11-3633

Type

Journal article

Journal

Microbiology

Publication Date

11/1997

Volume

143 ( Pt 11)

Pages

3633 - 3647

Keywords

Amino Acid Sequence, Bacterial Proteins, Escherichia coli, Formate Dehydrogenases, Genes, Bacterial, Hydrogenase, Membrane Proteins, Models, Chemical, Molecular Sequence Data, Multienzyme Complexes, Open Reading Frames, Operon, Protein Structure, Secondary, Protons, Restriction Mapping, Sequence Alignment, Sequence Analysis, DNA, Sequence Homology, Amino Acid