Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The mouse Hox 2.1 gene contains a homeobox sequence and is therefore a candidate for a vertebrate gene involved in the control of embryonic patterning or positional specification. To investigate this possibility, we have used in situ hybridization to determine the pattern of Hox 2.1 expression during mouse embryogenesis. At 8.5 days post coitum, Hox 2.1 is expressed at a low level in the posterior neuroectoderm and mesoderm, and in the neuroectoderm of the presumptive hindbrain. At 12.5 days p.c., Hox 2.1 is expressed in an anteroposterior restricted domain extending from the hindbrain throughout the length of the spinal cord, predominantly in the dorsal region. Between 12.5 and 13.5 days p.c. the domain becomes localized to the occipital and cervical regions. We also detect Hox 2.1 RNA in the embryonic lung, stomach, mesonephros and metanephros, as well as in myenteric plexus, dorsal root ganglia and the nodose ganglion, and in mature granulocytes. The embryonic expression of Hox 2.1 in neural tissue is compared with that of Hox 3.1, which also shows anteroposterior restricted domains of gene expression. These patterns of expression are not clearly consistent with Hox 2.1 or Hox 3.1 having roles in segmental patterning. However, the data are consistent with these genes having regulatory roles in anteroposterior positional specification in the neuroectoderm and mesoderm, and suggest that Hox 2.1 may also have functions during organogenesis.

Type

Journal article

Journal

Development

Publication Date

01/1988

Volume

102

Pages

159 - 174

Keywords

Animals, Central Nervous System, Connective Tissue, Embryonic and Fetal Development, Ganglia, Gene Expression Regulation, Genes, Homeobox, Mesoderm, Mesonephros, Mice, Nucleic Acid Hybridization, Peripheral Nerves, RNA, Spinal Cord