Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Hox gene cluster, and its evolutionary sister the ParaHox gene cluster, pattern the anterior-posterior axis of animals. The spatial and temporal regulation of the genes seems to be intimately linked to the gene order within the clusters. In some animals the tight organisation of the clusters has disintegrated. We note that these animals develop in a derived fashion relative to the norm of their respective lineages. Here we present the genomic organisation of the ParaHox genes of Ciona intestinalis, and note that tight clustering has been lost in evolution. We present a hypothesis that the Hox and ParaHox clusters are constrained as ordered clusters by the mechanisms producing temporal colinearity; when temporal colinearity is no longer needed or used during development, the clusters can fall apart. This disintegration may be mediated by the invasion of transposable elements into the clusters, and subsequent genomic rearrangements.

Type

Journal article

Journal

Mol Phylogenet Evol

Publication Date

09/2002

Volume

24

Pages

412 - 417

Keywords

Animals, Base Sequence, Ciona intestinalis, DNA Transposable Elements, Drosophila, Homeodomain Proteins, Molecular Sequence Data, Phylogeny, Time Factors