Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Habitat loss is the greatest threat to biodiversity in Borneo, and to anticipate and combat its effects it is important to predict the pattern of loss and its consequences. Borneo is a region of extremely high biodiversity from which forest is being lost faster than in any other. The little-known Sunda clouded leopard (Neofelis diardi) is the top predator in Borneo and is likely to depend critically on habitat connectivity that is currently being rapidly lost to deforestation. We modeled the effects of landscape fragmentation on population size, genetic diversity and population connectivity for the Sunda clouded leopard across the entirety of Borneo. We modelled the impacts of land use change between the years 2000, 2010 and projected forwards to 2020. We found substantial reductions across all metrics between 2000 and 2010: the proportion of landscape connected by dispersal fell by approximately 12.5% and the largest patch size declined by around 15.1%, leading to a predicted 11.4% decline in clouded leopard numbers. We also predict that these trends will accelerate greatly towards 2020, with the percentage of the landscape being connected by dispersal falling by about 57.8%, the largest patch size falling by around 62.8% and the predicted clouded leopard population falling by 62.5% between 2010 and 2020. We predicted that these large declines in clouded leopard population size and connectivity will also substantially reduce the genetic diversity of the remaining clouded leopard population.


Journal article




Public Library of Science (PLoS)