Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tumor necrosis factor (TNF) receptor-associated factor-2 (TRAF2) binds to cIAP1 and cIAP2 (cIAP1/2) and recruits them to the cytoplasmic domain of several members of the TNF receptor (TNFR) superfamily, including the TNF-TNFR1 ligand-receptor complex. Here, we define a cIAP1/2-interacting motif (CIM) within the TRAF-N domain of TRAF2, and we use TRAF2 CIM mutants to determine the role of TRAF2 and cIAP1/2 individually, and the TRAF2-cIAP1/2 interaction, in TNFR1-dependent signaling. We show that both the TRAF2 RING domain and the TRAF2 CIM are required to regulate NF-kappaB-inducing kinase stability and suppress constitutive noncanonical NF-kappaB activation. Conversely, following TNFR1 stimulation, cells bearing a CIM-mutated TRAF2 showed reduced canonical NF-kappaB activation and TNF-induced RIPK1 ubiquitylation. Remarkably, the RING domain of TRAF2 was dispensable for these functions. However, like the TRAF2 CIM, the RING domain of TRAF2 was required for protection against TNF-induced apoptosis. These results show that TRAF2 has anti-apoptotic signaling roles in addition to promoting NF-kappaB signaling and that efficient activation of NF-kappaB by TNFR1 requires the recruitment of cIAP1/2 by TRAF2.

Original publication




Journal article


J Biol Chem

Publication Date





35906 - 35915


Amino Acid Motifs, Animals, Apoptosis, Cell Line, Inhibitor of Apoptosis Proteins, Mice, Mice, Knockout, NF-kappa B, Protein Binding, Protein Structure, Tertiary, Receptors, Tumor Necrosis Factor, Type I, TNF Receptor-Associated Factor 2, Tumor Necrosis Factors