Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Three separate forms of in vitro stimulation were assessed for their capacity to activate hapten-gelatin fractionated, fluorescein- (Flu) specific murine splenic B lymphocytes. They were: a) Flu-polymerized flagellin (Flu-POL) acting on a single Flu-specific B cell in microculture in the absence of "filler" or feeder cells, but in the presence of T cell-derived B cell growth and differentiation factor(s) (BGDF); b) a mixture of mitogens, E. coli lipopolysaccharide (LPS) and dextran sulfate, acting on a single Flu-specific B cell in the absence of added BGDF; and c) Flu-POL plus BGDF acting on single Flu-specific B cells as in a but with thymus filler cells also present. System c was markedly superior in causing antibody formation, 15 to 22% of cells forming a clone of Flu-specific antibody-forming cells (AFC), in contrast to 6% for system b and 3 to 6% for system a. Each stimulus was applied to single cells that had been size fractionated into samples of increasing size by using the forward light-scattering parameter of the fluorescence-activated cell sorter. Surprisingly, the smaller sized fractions proliferated poorly in system a and contributed less than 10% of the antibody-forming potential of the total population. The smaller cells proliferated better in system b, but only 10 to 15% of proliferating clones generated Flu-specific AFC, whereas the larger cells contributed 86% of the total AFC response. Even in system c, only 6% of the small cells formed AFC clones compared with 41% of the larger cells. It thus appears that the smaller half of murine B lymphocytes is relatively resistant to activation into proliferation and differentiation by "T-independent" antigens; when activated by mitogens, they clone less efficiently than larger cells. Despite these limitations, system c could generate a total of up to four hapten-specific AFC for every B cell placed into culture, making it the most efficient system of specific antibody formation yet described.


Journal article

Publication Date





554 - 560


Animals, B-Lymphocytes, Cell Differentiation, Cell Division, Cell Separation, Clone Cells, Dextran Sulfate, Dextrans, Drug Synergism, Escherichia coli, Flagellin, Growth Substances, Haptens, Interleukin-4, Lipopolysaccharides, Lymphocyte Activation, Mice