Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Does the visual system represent stereoscopic depth purely as a map of local disparities, or does it explicitly represent local relationships of disparity, such as disparity gradients? Experiments are reported in which visual search for a target containing the same disparity range as other elements in the display, but differing in the relationship of the disparities (stereo slant), was used to determine whether the target showed 'pop-out' like a unitary feature, or the serial search characteristic of feature conjunctions. Each stereo pair of elements was selected randomly from a range of outline parallelograms leaning to the right or to the left, so that the target could not be identified using any monocular shape cue. Response times for detection of the target (present on 50% of the trials) were independent of the number of elements in the display. This result was confirmed by varying element size and spacing, and by using oblique crosses rather than parallelograms as stimuli. It is concluded that stereoscopically defined slant, or disparity gradient, can be processed and compared in parallel across the display, and acts in this respect as an explicit unitary visual property. This contrasts with findings in analogous experiments on movement, which show that targets defined by divergence or deformation of optic flow can only be identified by serial search.

Original publication

DOI

10.1068/p200355

Type

Journal article

Journal

Perception

Publication Date

1991

Volume

20

Pages

355 - 362

Keywords

Attention, Depth Perception, Discrimination Learning, Humans, Optical Illusions, Orientation, Pattern Recognition, Visual, Psychophysics, Vision Disparity