First-in-human study of the safety and viability of intraocular robotic surgery.
Edwards TL., Xue K., Meenink HCM., Beelen MJ., Naus GJL., Simunovic MP., Latasiewicz M., Farmery AD., de Smet MD., MacLaren RE.
Microsurgery of the retina would be dramatically improved by instruments that offer supra-human precision. Here, we report the results of a first-in-human study of remotely controlled robot-assisted retinal surgery performed through a telemanipulation device. Specifically, 12 patients requiring dissection of the epiretinal or inner limiting membrane over the macula were randomly assigned to either undergo robot-assisted-surgery or manual surgery, under general anaesthesia. We evaluated surgical success, duration of surgery and amount of retinal microtrauma as a proxy for safety. Surgical outcomes were equally successful in the robotic-surgery and manual-surgery groups. Differences in the amount of retinal microtrauma between the two groups were statistically insignificant, yet dissection took longer with robotic surgery (median time, 4 min 5 s) than with manual surgery (1 min 20 s). We also show the feasibility of using the robot to inject recombinant tissue plasminogen activator under the retina to displace sight-threatening haemorrhage in three patients under local anaesthesia. A safe and viable robotic system for intraocular surgery would enable precise and minimally traumatic delivery of gene therapy or cell therapy to the retina.