Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neutron diffraction experiments have been performed to investigate and compare the structure of the hydration shell of three monosaccharides, namely, fructose, glucose, and mannose. It is found that despite their differences with respect to many thermodynamical quantities, bioprotective properties against environmental stresses, and taste, the influence of these monosaccharides on the bulk water solvent structure is virtually identical. Conversely, these sugars interact with the neighboring water molecules by forming H bonds of different length and strength. Interestingly, the sweetness of these monosaccharides, along with that of the disaccharide trehalose, is correlated with the length of these H bonds. This suggests that the small differences in stereochemistry between the different sugars determine a relevant change in polarity, which has a fundamental impact on the behavior of these molecules in vivo.

Original publication




Journal article


J Phys Chem Lett

Publication Date



3667 - 3672