Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Tyrosine 185 (Y185), one of the aromatic residues within the retinal (Ret) chromophore binding pocket in helix F of bacteriorhodopsin (bR), is highly conserved among the microbial rhodopsin family proteins. Many studies have investigated the functions of Y185, but its underlying mechanism during the bR photocycle remains unclear. To address this research gap, in situ two-dimensional (2D) magic-angle spinning (MAS) solid-state NMR (ssNMR) of specifically labelled bR, combined with light-induced transient absorption change measurements, dynamic light scattering (DLS) measurements, titration analysis and site-directed mutagenesis, was used to elucidate the functional roles of Y185 during the bR photocycle in the native membrane environment. Different interaction modes were identified between Y185 and the Ret chromophore in the dark-adapted (inactive) state and M (active) state, indicating that Y185 may serve as a rotamer switch maintaining the protein dynamics, and plays an important role in the efficient proton-pumping mechanism in the bR purple membrane.

Original publication

DOI

10.1016/j.bbabio.2018.05.011

Type

Journal article

Journal

Biochim Biophys Acta

Publication Date

23/05/2018

Keywords

Dark-adapted state and M state, Photocycle, Proton pumping, Retinal chromophore, Tyrosine 185