Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this study, the authors combined the cross-modal dynamic capture task (involving the horizontal apparent movement of visual and auditory stimuli) with spatial cuing in the vertical dimension to investigate the role of spatial attention in cross-modal interactions during motion perception. Spatial attention was manipulated endogenously, either by means of a blocked design or by predictive peripheral cues, and exogenously by means of nonpredictive peripheral cues. The results of 3 experiments demonstrate a reduction in the magnitude of the cross-modal dynamic capture effect on cued trials compared with uncued trials. The introduction of neutral cues (Experiments 4 and 5) confirmed the existence of both attentional costs and benefits. This attention-related reduction in cross-modal dynamic capture was larger when a peripheral cue was used compared with when attention was oriented in a purely endogenous manner. In sum, the results suggest that spatial attention reduces illusory binding by facilitating the segregation of unimodal signals, thereby modulating audiovisual interactions in information processing. Thus, the effect of spatial attention occurs prior to or at the same time as cross-modal interactions involving motion information.

Original publication




Journal article


J Exp Psychol Hum Percept Perform

Publication Date





927 - 937


Attention, Auditory Perception, Cues, Fixation, Ocular, Humans, Motion Perception, Space Perception