Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Candida glabrata (C. glabrata) forms part of the normal human gut microbiota but can cause life-threatening invasive infections in immune-compromised individuals. C. glabrata displays high resistance to common azole antifungals, which necessitates new treatments. In this investigation, we identified five C. glabrata deletion mutants (∆ada2, ∆bas1, ∆hir3, ∆ino2 and ∆met31) from a library of 196 transcription factor mutants that were unable to grow and activate an immune response in Drosophila larvae. This highlighted the importance of these transcription factors in C. glabrata infectivity. Further ex vivo investigation into these mutants revealed the requirement of C. glabrata ADA2 for oxidative stress tolerance. We confirmed this observation in vivo whereby growth of the C. glabrata Δada2 strain was permitted only in flies with suppressed production of reactive oxygen species (ROS). Conversely, overexpression of ADA2 promoted C. glabrata replication in infected wild type larvae resulting in larval killing. We propose that ADA2 orchestrates the response of C. glabrata against ROS-mediated immune defenses during infection. With the need to find alternative antifungal treatment for C. glabrata infections, genes required for survival in the host environment, such as ADA2, provide promising potential targets.

Original publication

DOI

10.1534/g3.118.200182

Type

Journal article

Journal

G3 (Bethesda)

Publication Date

04/05/2018

Volume

8

Pages

1637 - 1647

Keywords

Candida, Drosophila, Genetics of Immunity, gastrointestinal infection, host-pathogen interaction, Animals, Candida glabrata, Candidiasis, Drosophila, Fungal Proteins, Gastrointestinal Tract, Gene Deletion, Gene Library, Host-Pathogen Interactions, Larva, Phenotype, Reactive Oxygen Species, Transcription Factors