Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We present a general theoretical framework, incorporating both aggregation of states into classes and time interval omission, for stochastic modeling of the dynamic aspects of single channel behavior. Our semi-Markov models subsume the standard continuous-time Markov models, diffusion models and fractal models. In particular our models allow for quite general distributions of state sojourn times and arbitrary correlations between successive sojourn times. Another key feature is the invariance of our framework with respect to time interval omission: that is, properties of the aggregated process incorporating time interval omission can be derived directly from corresponding properties of the process without it. Even in the special case when the underlying process is Markov, this leads to considerable clarification of the effects of time interval omission. Among the properties considered are equilibrium behavior, sojourn time distributions and their moments, and auto-correlation and cross-correlation functions. The theory is motivated by ion channel mechanisms drawn from the literature, and illustrated by numerical examples based on these.

Original publication

DOI

10.1016/S0006-3495(93)81375-4

Type

Journal article

Journal

Biophys J

Publication Date

02/1993

Volume

64

Pages

357 - 374

Keywords

Biophysical Phenomena, Biophysics, Ion Channel Gating, Ion Channels, Kinetics, Markov Chains, Mathematics, Models, Biological