Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Proline residues are commonly found in putative transbilayer helices of many integral membrane proteins which act as transporters, channels and receptors. Intramembranous prolines are often conserved between homologous proteins. It has been suggested that such intrahelical prolines provide liganding sites for cations via exposure of the backbone carbonyl oxygen atoms of residues i-3 and i-4 (relative to the proline). Molecular modelling studies have been carried out to evaluate this proposal. Bundles of parallel proline-kinked helices are considered as simplified models of ion channels. The energetics of K+ ion-helix bundle interactions are explored. It is shown that carbonyl oxygens exposed by the proline-induced kink and at the C-terminus of the helices may provide cation-liganding sites. 'Hybrid' bundles of antiparallel helices, only some of which contain proline residues, are considered as models of transport proteins. Again, proline-exposed carbonyl oxygens are shown to be capable of liganding cations. The roles of alpha-helix dipoles and of the geometry of helix packing are considered in relation to cation-bundle interactions. Implications with respect to modelling of ion channel and transport proteins are discussed.

Type

Journal article

Journal

Protein Eng

Publication Date

01/1992

Volume

5

Pages

53 - 60

Keywords

Binding Sites, Biological Transport, Active, Carrier Proteins, Ion Channels, Ligands, Membrane Proteins, Models, Molecular, Proline, Protein Conformation