Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Simulated annealing via restrained molecular dynamics (SA/MD) has been used to model compact bundles of seven approximately (anti)parallel alpha-helices. Seven such helix bundles occur, e.g., in bacteriorhodopsin, in rhodopsin, and in the channel-forming N-terminal domain of Bacillus thuringiensis delta-endotoxin. Two classes of model are considered: (a) those consisting of seven Ala20 peptide chains; and (b) those containing a single polypeptide chain, made up of seven Ala20 helices linked by GlyN interhelix loops (where N = 5 or 10). Three different starting C alpha templates for SA/MD are used, in which the seven helices are arranged (a) on a left-handed circular template, (b) on a bacteriorhodopsin-like template, or (c) on a zig-zag template. The ensembles of models generated by SA/MD are analyzed in terms of their geometry and energetics, and the most stable structures from each ensemble are examined in greater detail. Structures resembling bacteriorhodopsin and structures resembling delta-endotoxin are both represented among the most stable structures. delta-Endotoxin-like structures arise from both circular and bacteriorhodopsin-like C alpha templates. A third helix-packing mode occurs several times among the stable structures, regardless of the C alpha template and of the presence or absence of interhelix loops. It is characterized by a "4 + 1" core, in which four helices form a distorted left-handed supercoil around a central, buried helix. The remaining two helices pack onto the outside of the core. This packing mode is comparable with that proposed for rhodopsin on the basis of two-dimensional electron crystallographic and sequence analysis studies.

Original publication




Journal article


Biophys J

Publication Date





1295 - 1310


Amino Acid Sequence, Bacillus thuringiensis, Bacterial Proteins, Bacterial Toxins, Bacteriorhodopsins, Biophysical Phenomena, Biophysics, Endotoxins, Helix-Loop-Helix Motifs, Hemolysin Proteins, Membrane Proteins, Models, Molecular, Molecular Sequence Data, Protein Conformation, Protein Structure, Secondary, Rhodopsin, Thermodynamics