Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alamethicin is a 20-residue channel-forming peptide that forms a stable amphipathic alpha-helix in membrane and membrane-mimetic environments. This helix contains a kink induced by a central Gly-X-X-Pro sequence motif. Alamethicin channels are activated by a cis positive transbilayer voltage. Channel activation is suggested to correspond to voltage-induced insertion of alamethicin helices in the bilayer. Alamethicin forms multi-conductance channels in lipid bilayers. These channels are formed by parallel bundles of transmembrane helices surrounding a central pore. A change in the number of helices per bundle switches the single channel conductance level. Molecular dynamics simulations of alamethicin in a number of different environments have been used to explore its channel-forming properties. These simulations include: (i) alamethicin in solution in water and in methanol; (ii) a single alamethicin helix at the surface of a phosphatidylcholine bilayer; (iii) single alamethicin helices spanning a phosphatidylcholine bilayer; and (iv) channels formed by bundles of 5, 6, 7 or 8 alamethicin helices spanning a phosphatidylcholine bilayer. The total simulation time is c. 30 ns. Thus, these simulations provide a set of dynamic snapshots of a possible mechanism of channel formation by this peptide.

Type

Journal article

Journal

Novartis Found Symp

Publication Date

1999

Volume

225

Pages

128 - 141

Keywords

Alamethicin, Amino Acid Sequence, Anti-Bacterial Agents, Computer Simulation, Ion Channels, Models, Molecular, Molecular Sequence Data, Protein Structure, Secondary