Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The HOLE procedure allows the prediction of the absolute conductance of an ion channel model from its structure. The original prediction method uses an empirically corrected Ohmic method. It is most successful, with predictions being reliable to within a factor of two. A new modification of the procedure is presented in which the self-diffusion coefficients of water molecules from molecular dynamics simulation are used to replace the empirical correction factor. A "prediction" of the conductance for the porin OmpF by the new method is made and shown to be very close to the experimental value. HOLE also allows the prediction of the effect that the addition of non-electrolyte polymers will have on channel conductance. The method has great potential to yield structural information from data provided by single channel recordings but needs further validation by making measurements on channels of known structure. Preliminary results are given of single channel records establishing the effects of non-electrolytes on the conductance of gramicidin D channels. As an example of the potential uses of the procedure application is made to examine the oligomerization of alpha-toxin (alpha-hemolysin) channels. A model for the alpha-toxin hexamer, based on the crystal structure for the heptamer, is generated using molecular mechanics methods. The compatibility of the structures with single channel conductance data is assessed using HOLE.


Journal article


Faraday Discuss

Publication Date



185 - 199


Computer Simulation, Ion Channels, Predictive Value of Tests, Structure-Activity Relationship, Type C Phospholipases