Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alamethicin (Alm) is a 20 residue peptide which forms a kinked alpha-helix in membrane and membrane-mimetic environments. Ion channels formed by intramembraneous aggregates of Alm are thought to be formed by bundles of approximately parallel Alm helices surrounding a central bilayer pore. Different channel conductance levels correspond to different numbers of helices per bundle, ranging from N = 5 to N > 8. Calculation of the predicted pKA values of the ring of Glu18 sidechains at the C-terminal mouth of the pore suggests that at neutral pH most or all of these sidechains will remain protonated. Nanosecond molecular dynamics (MD) simulations of N = 5, 6, 7 and 8 bundles of Alm helices in a POPC bilayer have been run, corresponding to a total simulation time of 4 ns. These simulations explore the stability and conformational dynamics of these helix bundle channels when embedded in a full phospholipid bilayer in an aqueous environment. The structural and dynamic properties of water in these model channels are examined. As in earlier in vacuo simulations (J. Breed, R. Sankararamakrishnan, I. D. Kerr and M. S. P. Sansom, Biophys. J., 1996, 70, 1643) the dipole moments of water molecules within the pores are aligned antiparallel to the helix dipoles. This helps to contribute to the stability of the helix bundles.


Journal article


Faraday Discuss

Publication Date



209 - 223


Alamethicin, Cell Membrane, Computer Simulation, Hydrogen-Ion Concentration, Ion Channels, Models, Molecular, Protein Conformation